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Critical Phenomena in Gases in the 
Presence of Gravity I 

J. V. Sengers 2 and J. M. J. van Leeuwen 3 

Gravity induces an inhomogeneous density distribution in fluids near the gas 
liquid critical point. In first approximation the local properties of the fluid at a 
given height can be identified with those of a homogeneous system with the 
same temperature and density. Very close to the critical point the density 
gradients become so steep that gravity affects the local properties of the fluid 
directly. A survey is presented of the nature and magnitude of these intrinsic 
gravity effects. 

KEY WORDS: compressibility; correlation length; critical phenomena; density 
profiles; gravity effects; interface thickness; surface tension. 

1. I N T R O D U C T I O N  

The presence of the earth's gravitational field has generally a negligible 
effect on the thermophysical properties of fluids. A notable exception, 
however, is a gas near its critical point. Here gravity induces an 
inhomogeneous density distribution and all thermophysical properties will 
vary as a function of height. In order to account for these effects in critical- 
phenomena experiments, one usually assumes that at a given level the local 
properties of the fluid can still be identified with those of a locally 
homogeneous fluid [-1, 2]. Very close to the critical point this assumption 
ceases to be valid due to the interactions between layers of different density. 
As a consequence, gravity modifies the local fluid properties themselves 
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very close to the critical point and changes the nature of the critical-point 
phase transition. It is the purpose of this paper to give a qualitative and 
quantitative assessment of these intrinsic gravity effects. 

The state of a system near a critical point is characterized by the 
presence of large fluctuations which lead to a singular behavior of the ther- 
mophysical properties. In the modern theory of critical phenomena the 
effect of these fluctuations is accounted for by a renormalization-group 
analysis of a system represented by a Landau-Ginzburg Hamiltonian [3]. 
In order to develop a theory of the gravity effects, one should extend the 
theory to a renormalization analysis in the presence of an external field. 
Such an analysis is not yet available. Instead we adopt an approximate 
procedure in which the effect of the critical fluctuations is incorporated by 
the adoption of a scaled equation for the free energy and the density profile 
is determined by minimizing this free energy in the presence of gravity as is 
done in the squared-gradient theory of van der Waals for the vapor-liquid 
interface [4]. One then obtains a differential equation for the density p as a 
function of the height z which has the form [5] 

d2p 3~ 
A-~z2= r-+gz (1) 

where g is the gravitational acceleration constant. The height z increases in 
the direction opposite to the gravitational field and the reference level z = 0 
is chosen at the level where the density p equals the critical density Pc. The 
chemical potential difference A# is 

A# = #(p(z), T) - #(p~, T) (2) 

The coefficient A is related to the correlation length ~ and the symmetrized 
compressibility Z = (8P/~?#) T by 

A = ~Z(p(z), T)/z(p(z), T) (3) 

The quantities #(p(z), T), ~(p(z), T), and Z(p(z), T) are those of a spatially 
homogeneous system with uniform density p-p ( z )  at the given tem- 
perature T. Without the gravitational term gz, Eq. (1) reduces to the dif- 
ferential equation adopted by Fisk and Widom in the theory of the struc- 
ture of the vapor-liquid interface near the critical point [-4, 6]. The 
squared-gradient theory is approximate since it fails to include in a con- 
sistent way the small deviations of the correlation function from the 
Ornstein-Zernike form [5]. Nevertheless, we expect this procedure to yield 
a description of the intrinsic gravity effects that is basically correct. 



Critical Phenomena in the Presence Of Gravity 547 

We find it convenient to reduce the thermodynamic functions and 
variables with the aid of the critical temperature Tc, the critical density Pc, 
and the critical pressure Pc. We thus define 

T* = T  p ,  = P ,  g ,  =#Pc (4) 
Tc' Pc Pc 

and 

A T * = T * - I ,  A p * = p * - l ,  A#*=l~*(p(z), T)-I~*(po, T) (5) 

To facilitate a discussion of the dependence of the gravity effects on g, we 
also define 

g * = g  Ho=  P---2-~ (6) 
go' Pc go 

where go = 9.81 m. s -2 corresponds to the earth's gravitational field. Since 
A/~* is an antisymmetric function of Ap*, it is sufficient to solve the dif- 
ferential equation for z > 0 only and we obtain 

4 2 d2[Ap*t g* 
z* d~ ~ I ~ ' 1 - ~  

(7) 

where Z* = (Op*/@*)r* = ( ~ A p * / ~ ] A * ) / j T . ,  

2. SCALING LAWS AND UNIVERSALITY IN THE 
ABSENCE OF GRAVITY 

In the absence of gravity the asymptotic critical behavior of the ther- 
modynamic properties can be characterized in terms of scaling laws [7]. 
For A~t*(p, T), ~*(p, T), and ~(p, T) these scaling laws can be written in 
the form 

Ate*= +_DlAp*16 h(u) (8) 

Z* -1  = D tAp*l  ~/~ X ( u )  (9) 

= ~oR(U)(Z*/r) ~/~ (10) 

where u = AT*/xo IAD*I 1/~ with Xo = B -1/~ and X(u) = 6(u) - B-lu dh/du. 
The critical exponents/3, 7, 6, and v, which are interrelated by ~ =/3(6 - 1) 
and v =/3(6 + 1)/3, and the scaling functions h(u) and R(u) are universal, 
i.e., the same for all systems in a universality class. Fluids near the gas- 
liquid critical point belong to the universality class of three-dimensional 
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Ising-like systems [8]. The amplitudes B, F, D, and ~o depend on the 
system but are interrelated by the universal amplitude combinations 

D F  ( B2Pc'] U3 
RD = DFB ~-1 = - -  ~- 1.74; R~ = ~o \ k - - ~ J  - 0.69 (11 ) 

where kB is Boltzmann's constant. Values of the critical parameters Pc, Pc, 
and To, the critical power-law amplitudes Xo, D, F, and ~o, and the gravity 
scale factor Ho are presented in Table I for a number of fluids. 

Substitution of the scaling laws into the differential equation yields 

Aod2IAp*I 1 I g*z~ G(u)lAp,l.~/~ (12) 
dz 2 - D 2 H  2 [AP*Ia h ( U ) - D H o j  

with r/v = 2v - ~ and 
~o2R2(0) 

A o = DZHg(DF)2v/,e5 ~u/~ (13) 

The scaling function G(u)is related to the scaling functions X(u) and R(u) 
by 

: R2(0) IX(u)] 
G(u) R2(u ) Lx(o)J (14) 

3. SCALING LAWS AND UNIVERSALITY IN THE 
PRESENCE OF GRAVITY 

The scaling laws can be generalized to include the effect of gravity. For 
this purpose we rescale the variables such that [5] 

Ap*=2og*~r AT* =%g*r z=~og* vr (15) 

with 
1 

r  (16) 

The scale factors 2o, Zo, and Go are defined by 

20 = A~o ~/2, Zo = xoA~o/2, Go = DHoA~o a~/2 (17) 

In terms of these rescaled variables the differential equation (12) assumes 
the form 

d2 tA-p[ 
d5 2 [-[~[a h ( u ) -  5] G(u)lAp[ ~w~ (18) 
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with u =  AT/tAp[ ~/p. Since the critical exponents and the scaling functions 
are universal, it follows from (18) that the scaled density Ap will be a 
universal function of the scaled height ~ and the scaled temperature A T, 
We thus conclude that in the presence of gravity the density Ap* satisfies a 
scaling law of the form 

z A T* .) 
Ap*(z, AT*) = 20 g*~+-~ ~o gu  ~+' mo g*C~J (19) 

where Ap is a universal function of its variables. The corresponding scaling 
law for the surface tension a becomes [9] 

AT* "] 
a(A T*) = So g,2~ 6 \% g,~} (20) 

with 

So = PcDs + 1~o = PcD2HoA~o(2~ 1)~bl2 (21) 

It is interesting to note that the validity of these scaling laws is not 
subject to the limitations of the squared-gradient theory. The scaling laws 
(8) and (10) imply that A#*(p,T) and ~(p,T) are generalized 
homogeneous functions of the form 

Ap*(b-~/V Ap*, b-1/~ AT * ) = b-~6/VAlt*(Ap *, AT*) (22)  

~(b-~/VAp*, b-1/VAT *) = b~(Ap*, AT*) (23) 

for any values of the parameter b. In terms of the concepts of the renor- 
malization-group theory, this result is to be interpreted as follows [3]. If 
we scale all distances, and hence the correlation length r with a factor b, 
then Ap* scales with a factor b -tJ/~, AT* with a factor b -l/v, and A/~* with 
a factor b -p~/v. Since the gravitational potential gz contributes to the effec- 
tive chemical potential, we expect gz also to scale with a factor b -~/~ as 
does A#*. Since z will scale with a factor b, g will scale with a factor 
b ~/~/b = b -~/v*. We thus expect that 

Ap*(b-1/V:g, bz, b 1/v AT*) =b-/3/VAp*(g, z, AT*) (24) 

Substitution of b = g~: in (24) reproduces the scaling law (19). 
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4. D E N S I T Y  P R O F I L E S  I N  T H E  O N E - P H A S E  R E G I O N  A B O V E  To 

In the  one-phase  region,  tha t  is for u > - 1 ,  the scal ing funct ions h(u) 
and R(u) are k n o w n  with reasonab le  accuracy  and can be a p p r o x i m a t e d  by 

[53 
h(u) = (1 + u) r [1  + E( I  + u)2e/(" q 

l ) / 2 f i  

T + E  J (25) 

8 + u (26) 
R(u )=7  + u 

with fi = 0.325, ? = 1.240, and  E =  0.287. 
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Fig. 1. Density dp as a function of the height ~ at various temperatures 
above To. The solid curves represent the actual density profiles in the 
presence of gravity. The dashed curves are those obtained if one neglects 
the effects of the d2Ap/dY. 2 term on the profiles. 
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Using these approximants for the scaling functions we have solved the 
differential equation (18). Density profiles thus obtained are shown in 
Fig. 1 for a few selected temperatures [5]. In Fig. 1 we also show the 
profiles obtained if one neglects the dp2/dz 2 term, which accounts for the 
interaction between the layers; in that case the profile would be determined 
by IA--p] 6 h(u)= ~, which implies that the density gradient at the layer z =  0 
corresponding to p = p~ would diverge as 

] dA-p ~ ~ 1.741ATI_ ~ (27) 
- ~ = o  x~ 

The actual density gradient does not diverge but reaches, at the critical 
point, the value [5] 

- -  m 

lim clap dAp 
~ o ]  d~ ~=0 = T = 0 . 9 6  (28) 

The corresponding values for the density gradient IdAp*/dzlc in fluids in 
the earth's gravitational field are included in Table I. This gradient varies 
from 0.8 %/#m in 3He to 0.3 %//~m in steam. 

It turns out that the intrinsic gravity effects, i.e., the differences 
between the solution of the differential equation (18) and the approximate 
solution ~=lA-pl6h(u) become significant at temperatures AT for which 
[5] 

AT<<,AT+ = 6  (29) 

5. DENSITY PROFILES IN THE TWO-PHASE REGION BELOW To 

In order to extend the theory to the two-phase region below To we 
need expressions for the scaling functions for densities between those of the 
coexisting vapor and liquid phases, i.e., for u<  -1.  Here we follow the 
procedure of Fisk and Widom [4,6] by using a classical interpolation 
function but with nonclassical values for the critical exponents. The dif- 
ferential equation (18) then reduces for u < -1  to [9] 

a 2 L~-pl 
dz 2 - { a l i b i  ~ -  IATI~IApl] - ~ }  O(-1) lArl  ~ (30) 

The constant a is determined by the condition that the compressibility be 
continuous at the phase boundary, which implies a= X ( - 1 ) / ( 6 - 1 ) =  
7-1(1 + E)o y}/2fl 
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To obtain the density profiles below To we thus use (30) for u < -1 ,  
supplemented with (18) for the vapor and liquid regions, i.e., for u >  -1 .  
Density profiles thus obtained are shown in Fig. 2 for a few selected tem- 
peratures [9].  In Fig. 2 we also show the profiles obtained from the theory 
of Fisk and Widom in which gravity effects are neglected [4, 6]. The 
theory of Fisk and Widom without gravity is obtained if the ~ term on the 
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Fig. 2. Density Ap as a function of the height ,~ at various temperatures 
below T c. The solid curves represent the actual density profiles in the 
presence of gravity. The dashed curves represent the density profiles 
calculated from the theory of Fisk and Widom without gravity effects. 
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right-hand side of (30) is deleted; it predicts that the density gradient at the 
layer z = 0 coresponding to p = po would go to zero as [-9] 

dAp l a G ( - 1 ) ( 6 -  1/.1'/2 
e=0=L  �9 -~+~ I~--~1 a + v ~ 0.677 IA-TI a+v (31) 

In reality this density gradient approaches at the critical point the same 
value IdA---p/d~lo = 0.96 as when the critical point is approached from above. 

On comparing Figs. 1 and 2 we conclude that the density profiles in 
the one-phase region above Tc are smoothly connected with the density 
profiles in the two-phase region below To. This phenomenon is further 
illustrated in Fig. 3, where we have plotted the density gradient 
[dAp/d~[e=o as a function of the temperature. This density gradient crosses 
over from the power law (27) well above Tc to the power law (31) well 
below To. 

IO i I I I I I I i [ 

I 

o II /~/ /  / / ;  
; t 

~0.677 I~1 ~+" 

0.1 

0.05 I I I I t I I I 
+10  + 8  + 6  + 4  + 2  0 - 2  - 4  - 6  - 8  -10  

I 

AT  

Fig. 3. Density gradient [Ap/ds at ~ = 0 as a function of A T. The 
solid curve represents the actual behavior of the density gradient 
in the presence of gravity. The dashed curve for A T >  0 indicates 
the power law (27) obtained if one neglects the effect of the 
d2-~p/d~ 2 term on the profiles. The dashed curve for A T < O  
indicates the power law (31) obtained from the theory of Fish and 
Widom without gravity effects. 
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We define the thickness L = ~o g*-voL of the interface as the distance 
over which the density changes from that of the liquid at the phase boun- 
dary to that of the vapor at the phase boundary. The scaled interface 
thickness L is p lo t ted  in Fig. 4 as a funct ion of the tempera ture .  In the 
theory  of F isk  and  W i d o m  wi thout  gravity,  the interface thickness  is 
predic ted  to diverge as fAT[ -v. We find tha t  for ]AT[>>I the interface 
thickness satisfies an equa t ion  of the form [ 9 ]  

L -  2 In [ G ( - 1 )  IA-~ 
CI~TI ~' L 2C2Vo I (32)  

w i t h  C 2 = aG( - 1 )(6 - 1 ) and  Vo "" 2.9. F o r  I A T[ < 1, the in ter face th ickness 
goes to zero as [93 

2 
L - I ~ 1  ~ _~ 2.08 IATI ~ (33) 

IdAp/d~lc 

Thus the interface thickness first increases when the cri t ical  t empera tu re  is 
a p p r o a c h e d  from below, reaches a m a x i m u m  value 

Lma• = 2.14 (34) 

I I I 

3 
I 2 

2 ,'2 

L~ 

F 

0.5 

O ,01 -0,1 -[ -I0 -I00 

AT 

Fig. 4. Interface thickness L as a function of A~. The 
solid curve represents the actual interracial width in the 
presence of gravity. The dashed curve labeled 1 represents 
the asymptotic power law (33} for small IA-TI; the dashed 
curve labeled__ 2 represents the asymptotic behavior (32) for 
large l z~ TI. 



556 Sengers and van Leeuwen 

at a temperature AT= -2.2,  and then goes to zero upon closer approach 
to To. 

Values for the maximum vapor-liquid interface thickness to be expec- 
ted in the earth's gravitational field are included in Table I. This maximum 
interface thickness is of the order of a few micrometers. 

The theory presented here is incomplete in that it does not include the 
effects of capillary waves on the interface thickness [4, 10, 11]. However, 
the capillary wave effects are small in the temperature range we have con- 
sidered here [9].  

6. SURFACE TENSION 

The theory of Fisk and Widom without gravity predicts that the sur- 
face tension will asymptotically vanish as 

a = a o [A--TI 2v ~ 0.99 ITTI 2v (35) 

where 6 is the scaled surface tension defined by (20). The actual behavior 
of this scaled surface tension as a function of temperature is shown in 
Fig. 5. We find that in the presence of gravity the surface tension vanishes 
as [9]  

2 IdAp/d~lc i~-~1 ~_.v ~ 2 IATI ~-~v (36) e =  a ( - 1 )  

We mentioned earlier that the squared-gradient theory cannot deal 
correctly with the deviations of the correlation function from the Ornstein- 
Zernike theory which are of the order of the exponent t/. Strictly speaking, 
therefore, within the limitations of the present theory we cannot dis- 
criminate between an asymptotic power law for the surface tension propor- 
tional to I A TI ~-"v or proportional to I A TI B. 

We find that the actual surface tension will differ from the power law 
(35) expected without gravity at temperatures for which 

IATI ~< IAT_I = 9  (37) 

On comparing with (29) we conclude that intrinsic gravity effects are 
present in a temperature range 

AT+ - A T  1 - - - -  15 (38) 

The corresponding temperature range for intrinsic gravity effects in fluids 
in the earth's gravitational field is included in Table I. For  most fluids this 
temperature range is of the order of a millidegree. 
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Fig. 5. Surface tension 6 as a function of AT. The solid 
curve represents the actual interracial tension in the 
presence of gravity. The dashed curves represent the 
asymptotic equations (36) and (35) for small and large 
values of IzlTI. 

7. C O R R E L A T I O N  L E N G T H  

The squared-gradient theory can be extended to the correlation 
function. In a homogeneous system the correlation length ~ diverges at the 
critical point. In the presence of gravity the correlation function becomes 
anisotropic and we distinguish between a correlation length ~lj(z, AT*) 
parallel to the gravitational field and a correlation length ~• AT*) per- 
pendicular to the gravitational field. These correlation lengths satisfy the 
scaling laws 

- ( z d i e* )  
ill(z, A r*)  = ~o g* - v~ ~-ii _~og~ re, Vo g*-----~] (39) 

4 < (z, zJ T* ) = [o g* -uo g • ~og* -"~' % g*--~) (40) 



5 5 8  S e n g e r s  a n d  van  L e e u w e n  

In a previous paper we have evaluated the two correlation lengths (il and 
(• as a function of ,~ and A---T in the one-phase region above the critical 
temperature [12]. An investigation of these correlation lengths in the 
vapor-liquid interface below the critical temperature will be published 
elsewhere [ 13 ]. 

Since the results have been discussed in considerable detail in a 
previous publication [14], we consider here only the behavior of these 
correlation lengths at the critical temperature. The scaled correlation 
lengths ~l and (~_ are plotted as a function of the scaled height ~ in Fig. 6. 
In the same figure we also show the correlation length ((p(z), To) 
calculated in the locally homogeneous approximation. In the locally 
homogeneous approximation ~(p(z), Tc) diverges at p (0 )=  Pc- The actual 
correlation lengths (ll and (• remain finite at p = Pc, where they reach the 
values [12] 

(H.c = 0.515, (z,c = 0.889 (41) 

The corresponding values of the correlation lengths ~iix and ~• for fluids 
in the earth's gravitational field are included in Table I. The maximum 
values of the correlation length in fluids in the earth's gravitational field are 
of the order of 2 ktm. 

From Fig. 6 we note that the correlation length ~• perpendicular to 
the gravitational field reaches its maximum value at the critical layer Z = 0 
where p = p c ,  but the correlation length (ll reaches its maximum value 
1.4 (ll.c at a layer slightly above and below the critical layer. The latter 

3 ' 0 1  I I I I I I I I I J I I 5 ,0~ 
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I I i 
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' l J,O [ ~' i,o 

0,5 ~ 0,5 
0.3 - 0,5L 
0 , 2  012 I 
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(Q) 

i I I I ~ r i  i J I I 
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- 4  2 0 + 2  + 4  ' 

(b) 
Fig. 6. The correlation lengths (ll and (•  as a function of the height ~ at the critical 
temperature. The solid curves represent the actual correlation lengths parallel to the 
gravitational field (~Jl) and perpendicular to the gravitational field (~• The dashed 
curves represent the correlation length ((p(z), To) calculated in the locally 
homogeneous approximation. 
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effect is a consequence of the asymmetry induced in the correlation 
function in the direction parallel to the gravitational field. For a further 
discussion the reader is referred to previous publications [-12, 14]. 
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